Pectin-cellulose interactions in the Arabidopsis primary cell wall from two-dimensional magic-angle-spinning solid-state nuclear magnetic resonance.
نویسندگان
چکیده
The primary cell wall of higher plants consists of a mixture of polysaccharides whose spatial proximities and interactions with each other are not well understood. We recently obtained the first two-dimensional (2D) and three-dimensional high-resolution magic-angle-spinning (13)C solid-state nuclear magnetic resonance spectra of the uniformly (13)C-labeled primary cell wall of Arabidopsis thaliana, which allowed us to assign the majority of (13)C resonances of the three major classes of polysaccharides: cellulose, hemicellulose, and pectins. In this work, we measured the intensity buildup of (13)C-(13)C cross-peaks in a series of 2D (13)C correlation spectra to obtain semiquantitative information about the spatial proximities between different polysaccharides. Comparison of 2D spectra measured at different spin diffusion mixing times identified intermolecular pectin-cellulose cross-peaks as well as interior cellulose-surface cellulose cross-peaks. The intensity buildup time constants are only modestly longer for cellulose-pectin cross-peaks than for interior cellulose-surface cellulose cross-peaks, indicating that pectins come into direct contact with the cellulose microfibrils. Approximately 25-50% of the cellulose chains exhibit close contact with pectins. The (13)C magnetization of the wall polysaccharides is not fully equilibrated by 1.5 s, indicating that pectins and cellulose are not homogeneously mixed on the molecular level. We also assigned the (13)C signals of cell wall proteins, identifying common residues such as Pro, Hyp, Tyr, and Ala. The chemical shifts indicate significant coil and sheet conformations in these structural proteins. Interestingly, few cross- peaks were observed between the proteins and the polysaccharides. Taken together, these data indicate that the three major types of polysaccharides in the primary wall of Arabidopsis form a single cohesive network, while structural proteins form a relatively separate domain.
منابع مشابه
Cellulose-Pectin Spatial Contacts Are Inherent to Never-Dried Arabidopsis Primary Cell Walls: Evidence from Solid-State Nuclear Magnetic Resonance.
The structural role of pectins in plant primary cell walls is not yet well understood because of the complex and disordered nature of the cell wall polymers. We recently introduced multidimensional solid-state nuclear magnetic resonance spectroscopy to characterize the spatial proximities of wall polysaccharides. The data showed extensive cross peaks between pectins and cellulose in the primary...
متن کاملStructure and dynamics of Brachypodium primary cell wall polysaccharides from two-dimensional (13)C solid-state nuclear magnetic resonance spectroscopy.
The polysaccharide structure and dynamics in the primary cell wall of the model grass Brachypodium distachyon are investigated for the first time using solid-state nuclear magnetic resonance (NMR). While both grass and non-grass cell walls contain cellulose as the main structural scaffold, the former contains xylan with arabinose and glucuronic acid substitutions as the main hemicellulose, with...
متن کاملProbing the molecular architecture of Arabidopsis thaliana secondary cell walls using two- and three-dimensional (13)C solid state nuclear magnetic resonance spectroscopy.
The plant secondary cell wall is a thickened polysaccharide and phenolic structure, providing mechanical strength to cells, particularly in woody tissues. It is the main feedstock for the developing bioenergy and green chemistry industries. Despite the role that molecular architecture (the arrangement of biopolymers relative to each other, and their conformations) plays in dictating biomass pro...
متن کاملStructure and interactions of plant cell-wall polysaccharides by two- and three-dimensional magic-angle-spinning solid-state NMR.
The polysaccharide-rich cell walls (CWs) of plants perform essential functions such as maintaining tensile strength and allowing plant growth. Using two- and three-dimensional magic-angle-spinning (MAS) solid-state NMR and uniformly (13)C-labeled Arabidopsis thaliana, we have assigned the resonances of the major polysaccharides in the intact and insoluble primary CW and determined the intermole...
متن کاملFolding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR
Exploitation of plant lignocellulosic biomass is hampered by our ignorance of the molecular basis for its properties such as strength and digestibility. Xylan, the most prevalent non-cellulosic polysaccharide, binds to cellulose microfibrils. The nature of this interaction remains unclear, despite its importance. Here we show that the majority of xylan, which forms a threefold helical screw in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 51 49 شماره
صفحات -
تاریخ انتشار 2012